The Design and Implementation of XiaoIce

An Empathetic Social Chatbot
Zhao, et al 2019 @Microsoft

Presented by Adrian Suna Choi
Machines converse with humans through natural languages
Engage in empathetic conversations
Have come a long way since 1960s

A Fundamental Challenge in AI – social chatbots
Timeline of Development Of Conversational Systems

1960s/70s
- **Eliza** (Weizenbaum, 1966)
- **Parry** (Colby, 1972)

2000s
- **Task Completion systems**

applied as in DARPA communication program

2009
- **Alice**

2010s
- **Intelligent Personal Assistants (IPAs)** such as Siri

2014
- **1st-gen Xiaolce**

Data-driven ML approach

Excellent only within some domains

Challenges of IPAs?
Xiaolce’s Uniqueness

• Early chatbots designed for chitchat
• Endowed with empathy, personality and skills
• Integration of EQ and IQ to optimize long-term user engagement
The Objective Addressed

AI companion

Long-term emotional connections formed with users

To satisfy human need for communication, affection and social belongs

To pass the time-sharing test
Design Principles

- IQ+EQ+personality
- CPS as social chat metric
- Social chat as hierarchical decision-making
System Architecture

Fig 1. Xiaolce system architecture.
Implementation of Conversation Engine Dialogue Manager

- Central Controller of the dialogue system

\[a = \pi(s) \]

- Dialogue Policy
- Action – skill/Core Chat
- Current dialogue state s

Global State Tracker

Dialogue Policy
- Top level policy for skill selection
- Topic manager for Core Chat

Dialogue Manager
Implementation of Conversation Engine
Empathetic Computing

• Contextual Query Understanding
• User understanding
• Interpersonal response

\[s = (Q_c, C, e_Q, e_R) \]
Fig 2. An example conversation session

...
11 [Human] You like Ashin that much, huh?
 [Xiaoice] Why not? You don’t like him?
12 [Human] I don’t like him, neither dislike him ➔ I don’t like Ashin, neither dislike Ashin
 [Xiaoice] I love every song of him
13 [Human] Really?
 [Xiaoice] Especially The Time Machine
14 [Human] Oh? Never heard of that ➔ Oh? Never heard of The Time Machine
 [Xiaoice] Shall I send you the song?
15 [Human] Okay ➔ Okay, send The Time Machine.
 [Xiaoice] Don’t know if you will like it or not” [Play the music card]

<table>
<thead>
<tr>
<th>Topic</th>
<th>music, Ashin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intent</td>
<td>request</td>
</tr>
<tr>
<td>Sentiment</td>
<td>sad, nervous ➔ neutral</td>
</tr>
<tr>
<td>Opinion</td>
<td>neutral</td>
</tr>
<tr>
<td>Age</td>
<td>25</td>
</tr>
<tr>
<td>Gender</td>
<td>male</td>
</tr>
<tr>
<td>Interests</td>
<td>singing, music ...</td>
</tr>
<tr>
<td>Occupation</td>
<td>salesman</td>
</tr>
<tr>
<td>Personality</td>
<td>quite, serious ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>music, Ashin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intent</td>
<td>Inform</td>
</tr>
<tr>
<td>Sentiment</td>
<td>happy</td>
</tr>
<tr>
<td>Opinion</td>
<td>positive</td>
</tr>
<tr>
<td>Age</td>
<td>18</td>
</tr>
<tr>
<td>Gender</td>
<td>female</td>
</tr>
<tr>
<td>Interests</td>
<td>music, games, movie, singing ...</td>
</tr>
<tr>
<td>Occupation</td>
<td>AI chatbot</td>
</tr>
<tr>
<td>Personality</td>
<td>reliable, sympathetic, affectionate...</td>
</tr>
</tbody>
</table>

... ...
... ...
... ...
... ...
Implementation of Conversation Engine
Core Chat

GENERAL CHAT & DOMAIN CHATS
CRUCIAL COMPONENT OF XIAOICE’S IQ AND EQ
RETRIEVAL-BASED GENERATOR USING PAIRED/UNPAIRED DATA
NEURAL RESPONSE GENERATOR
Fig 3. RNN-based neural response generator

\[v = \sigma(W^T_Q e_Q + W^T_R e_R) \]

\[u_t = \sigma(W^T_P [h_{t-1}; e_t; v]) \]

\[z_t = \sigma(W^T_e [h_{t-1}; e_t; v]) \]

\[l_t = \tanh(W^T_t [z_t \odot h_{t-1}; e_t; v]) \]

\[h_t^Q = (1 - u_t) \odot h_{t-1} + u_t \odot l_t \]

\[p(R|Q_c, e_Q, e_R) = \prod_{i=1}^{N_R} \frac{\exp(f(h_{t-1}, e_r, v))}{\sum_{r'} \exp(f(h_{t-1}, e_{r'}, v))} \]

\[\arg\max_{\theta} \frac{1}{M} \sum_{i=1}^{M} \log p_{\theta}(R^{(i)}|Q^{(i)}_c, e^{(i)}_Q, e^{(i)}_R) \]

Fig 5. Examples to compare between consistent and inconsistent responses with seq2seq

[Human] How old are you?
[S2S-Bot] 16 and you?
[Human] What’s your age?
[S2S-Bot] 18.

[Human] How old are you?
[Xiaoice] I am 18, of course.
[Human] You age?
[Xiaolce] 18. Why?
[Human] Were you 18 last year?
[Xiaoice] I made a wish to stay 18 forever. Oh, my wish has come true.
<table>
<thead>
<tr>
<th>Query</th>
<th>Response</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>拿上脸不看 (Don’t want to look with my face in my hands.)</td>
<td>我边吃饭边看你 (I’m watching you while eating.)</td>
<td>0</td>
</tr>
<tr>
<td>你怎么了? (what is wrong with you?)</td>
<td>你为什么了? (why are you sad?)</td>
<td>1</td>
</tr>
<tr>
<td>当心捂出一脸痱子, 哈哈. (Haha, beware of the heat rash of your face.)</td>
<td>当心捂出一脸痱子, 哈哈. (Haha, beware of the heat rash of your face.)</td>
<td>2</td>
</tr>
<tr>
<td>我肚子有点疼 (I have a pain in my stomach.)</td>
<td>运动对身体有好处的 (Exercise is good for your health.)</td>
<td>0</td>
</tr>
<tr>
<td>喝热水了吗? (Have you been drinking hot water?)</td>
<td>喝热水了吗? (Have you been drinking hot water?)</td>
<td>1</td>
</tr>
<tr>
<td>来和我聊天, 分散一下注意力就好了 (Come and talk to me, just distract yourself.)</td>
<td>来和我聊天, 分散一下注意力就好了 (Come and talk to me, just distract yourself.)</td>
<td>2</td>
</tr>
<tr>
<td>我觉得自己太笨了 (I feel so stupid.)</td>
<td>大象的智商很高 (The elephant has a high IQ.)</td>
<td>0</td>
</tr>
<tr>
<td>多学习提高自己 (Learn more and improve yourself.)</td>
<td>多学习提高自己 (Learn more and improve yourself.)</td>
<td>1</td>
</tr>
<tr>
<td>很多聪明人都这么说耶 (That is what lots of smart people say about themselves.)</td>
<td>很多聪明人都这么说耶 (That is what lots of smart people say about themselves.)</td>
<td>2</td>
</tr>
<tr>
<td>为什么人总是活成自己不喜欢的样子 (Why do we always live the way we don’t like.)</td>
<td>喜欢一个人是发自内心的 (Love a person from my heart.)</td>
<td>0</td>
</tr>
<tr>
<td>因为人想要的太多 (Because we want too much.)</td>
<td>因为人想要的太多 (Because we want too much.)</td>
<td>1</td>
</tr>
<tr>
<td>因为那个是别人喜欢的样子 (Because that’s what others like.)</td>
<td>因为那个是别人喜欢的样子 (Because that’s what others like.)</td>
<td>2</td>
</tr>
<tr>
<td>我考试没及格 (I did not pass the exam.)</td>
<td>那要看和谁比呢 (It depends on whom you compare against.)</td>
<td>0</td>
</tr>
<tr>
<td>一次没关系，下次努力吧 (Don’t worry, try it next time.)</td>
<td>一次没关系，下次努力吧 (Don’t worry, try it next time.)</td>
<td>1</td>
</tr>
<tr>
<td>起码你不用怀疑自己能不能及格了 (At least you don’t have to wonder if you can pass.)</td>
<td>起码你不用怀疑自己能不能及格了 (At least you don’t have to wonder if you can pass.)</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig 7. Examples of query-response pairs that are used for training and validating General Chat.
Fig 6. An example of generating response candidates using the unpaired database and the Xiaolce knowledge graph (KG),

1 [Human] Tell me about Beijing → Tell me about Beijing
 [Xiaoice] Beijing’s Badaling Great Wall is best known in the Ming Great Wall, and it can be overlooked from Guanritai.

2 [Human] Tell me more → Tell me more Beijing
 [Xiaoice] When you come to Beijing, you must try authentic Beijing snacks. There are always a few that you like.
• Neural-model-based (NB) and retrieval-based generators (RB)
• Complementary in nature
• NB – robustness and high coverage
• RB - high quality responses

Table 1: Perplexity and BLEU for the seq2seq and persona models on the TV series dataset. Adapted from Li et al. [2016b].

<table>
<thead>
<tr>
<th>Models</th>
<th>Perplexity (vs. seq2seq)</th>
<th>BLEU (vs. seq2seq) (vs. LSTM-MMI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq2seq</td>
<td>27.3</td>
<td>1.6%</td>
</tr>
<tr>
<td>LSTM-MMI</td>
<td>27.3</td>
<td>1.7% (+6.3%)</td>
</tr>
<tr>
<td>Persona</td>
<td>25.0 (-8.4%)</td>
<td>1.9% (+18.8%) (+11.8%)</td>
</tr>
</tbody>
</table>
Implementation of Conversation Engine
Image Commenting

- Explicit & Implicit
- Grounded also in events, actions or even emotions
- Also using RB and GB approaches
- Text-to-image generator and boosted tree ranker

Fig 8. An example of deep convolutional neural network for visual feature vector extraction.
Labeled responses
0: 好想回家 (I really want to go home)
1: 比萨斜塔 (Leaning tower of Pisa)
2: 你要我帮你扶着么 (Should I help hold it?)

Labeled responses
0: 二哈就是二 (Huskies are stupid.)
1: 你家的? (Is she yours?)
2: 对它们无辜的小眼神毫无抵抗力 (No one can resist her innocent eyes.)

Labeled responses
0: 太美了 (It's so beautiful)
1: 这是啥? (What is this?)
2: 妈妈说来历不明的码不能扫 (Mom told me not to trust any code from unknown source.)

Labeled responses
0: 爱过吗 (Have you even loved?)
1: 美 (It's so beautiful.)
2: 乍一看，我以为是Windows (At first, it looks like Windows.)

Fig 9. Examples of image-comment pairs used
<table>
<thead>
<tr>
<th>Systems</th>
<th>BLEU-4</th>
<th>ROUGE-L</th>
<th>CIDEr-D</th>
<th>METEOR</th>
<th>SPICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM-XE: Vinyals et al. [2015]</td>
<td>2.96</td>
<td>11.6</td>
<td>1.74</td>
<td>10.43</td>
<td>3.27</td>
</tr>
<tr>
<td>LSTM-RL: Rennie et al. [2017]</td>
<td>3.43</td>
<td>12.3</td>
<td>2.08</td>
<td>11.84</td>
<td>3.64</td>
</tr>
<tr>
<td>DMSM: Fang et al. [2015]</td>
<td>2.73</td>
<td>10.52</td>
<td>1.22</td>
<td>11.37</td>
<td>2.63</td>
</tr>
<tr>
<td>Up-Down: Anderson et al. [2018]</td>
<td>3.23</td>
<td>12.73</td>
<td>1.52</td>
<td>12.66</td>
<td>2.69</td>
</tr>
<tr>
<td>XiaoIce (prototype)</td>
<td>4.53</td>
<td>15.33</td>
<td>3.21</td>
<td>15.51</td>
<td>4.82</td>
</tr>
</tbody>
</table>

Evaluation

LSTM-XE: some people
LSTM-RL: five men in a house
DMSM: man is standing in front of wall
Up-Down: man and women are standing in the room
XiaoIce: bill Clinton seems good in the white picture

LSTM-XE: big tree
LSTM-RL: green mountain
DMSM: green tree and a mountain
Up-Down: a big mountain with green tree and grass
XiaoIce: it is a beautiful place to travel

Fig 10. image comments generated by XiaoIce (prototype) and 4 state of the art image captioning systems.
Dialogue skills

• Content creation

• Deep engagement

• Task completion

Fig 13. Popular XiaoIce Deep Engagement skills

Fig 11 The framework of the Poem Creation skill.
Xiaolce in the Wild

Fig 13, The major Xiaolce milestones and their average CPS and numbers of active users.

<table>
<thead>
<tr>
<th></th>
<th>1st Generation</th>
<th>2nd Generation</th>
<th>3rd Generation</th>
<th>4th Generation</th>
<th>5th Generation</th>
<th>6th Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch data</td>
<td>May 2014</td>
<td>July 2014</td>
<td>August 2015</td>
<td>August 2016</td>
<td>August 2017</td>
<td>July 2018</td>
</tr>
<tr>
<td>Launch region(s)</td>
<td>China</td>
<td>China</td>
<td>China, Japan</td>
<td>China, Japan, US</td>
<td>China, Japan, US</td>
<td>China, Japan, US, India, Indonesia</td>
</tr>
<tr>
<td>CPS</td>
<td>5</td>
<td>7</td>
<td>19</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td># of Active Users</td>
<td>2.9M</td>
<td>5M</td>
<td>20M</td>
<td>150M</td>
<td>500M</td>
<td>660M</td>
</tr>
<tr>
<td>User experience</td>
<td>Text</td>
<td>--</td>
<td>Image, voice</td>
<td>Real time vision (RST)</td>
<td>Open-domain full duplex voice</td>
<td>Full duplex voice + RST</td>
</tr>
<tr>
<td>Core Chat</td>
<td>Retrieval-based models</td>
<td>--</td>
<td>--</td>
<td>Domain Chat: music and movie</td>
<td>Neural generation models</td>
<td>Empathic computing models</td>
</tr>
<tr>
<td>Content Generation</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Poem, song</td>
<td>Financial report, audiobook, TV/Radio program</td>
</tr>
<tr>
<td>Deep Engagement, Task Completion</td>
<td>--</td>
<td>Bing Knows</td>
<td>Deep QA</td>
<td>--</td>
<td>Social QA</td>
<td>Smart device control</td>
</tr>
<tr>
<td>Deployment</td>
<td>Single platform</td>
<td>Cross-platform</td>
<td>Official account solution</td>
<td>AI-infused 3P characters</td>
<td>Phone call</td>
<td>IoT device</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Full Duplex (voice)</th>
<th>Message-based Conversations</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>China</td>
</tr>
<tr>
<td>6 hours 3 minutes 8 domains 53 topics, 16 tasks</td>
<td>29 hours 33 minutes 7151 turns</td>
</tr>
</tbody>
</table>
Discussions + Pros & Cons

• Evaluation Metrics

• Ethics Concerns
 - Privacy
 - Who is in control
 - Expectation
 - Machine learning for good
Conclusions and Future Work

- Large-scale online logs since 2014
- Capable of interpreting users’ emotional needs
- An average CPS of 23 (substantially better than that of other chatbots and even human convos)

- Towards a **unified modelling framework**
- Towards **goal-oriented, grounded conversations**
- Towards a **proactive personal assistant**
- Towards an **ethical social chatbot**
References